

Matrix Science Pharma (MSP)

DOI: http://doi.org/10.26480/msp.02.2025.64.67

ISSN: 2521-0432 (Online) CODEN: MSPAFY

RESEARCH ARTICLE

EFFECTS OF PROCESSING METHODS ON THE NUTRIENT AND PHYTOCHEMICAL CONTENTS OF BITTER LEAF (*VERNONIA AMYGDALINA*) MEAL AS A POTENTIAL FEEDSTUFF FOR LIVESTOCK

Abiodun Oluwasesan Olosunde^{a*}, Femi Festus Oloidi^b and Samuel Kola Ayandiran^c

- ^a Bioresources Development Centre Ogbomoso, P.M.B. 3524 Ogbomoso, Oyo State, Nigeria.
- ^b Department of Agricultural Technology, Osun State College of Technology, Esa Oke, Osun State, Nigeria.
- ^c Department of Animal Science, Osun State University Osogbo, Osun State, Nigeria.
- *Corresponding Author Email: mrbgodveng@gmail.com

This is an open access article distributed under the Creative Commons Attribution License CC BY 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ARTICLE DETAILS

Article History:

Received 18 April 2025 Revised 18 May 2025 Accepted 17 May 2025 Available online 19 June 2025

ABSTRACT

This study investigated the effects of different drying methods on the nutrient and phytochemical contents of bitter leaf (Vernonia amygdalina) meal as a potential feedstuff for livestock. Fresh leaves of Vernonia amygdalina were subjected to three methods of processing: air drying, sun drying and oven drying. Samples included: fresh bitter leaf (BLF), fresh bitter leaf sundried for a day (BLS1D), fresh bitter leaf air dried for two days and sundried for a day (BLA2D) as well as fresh bitter leaf oven dried at 105°C for 24 hours (BLOV1D). The proximate composition, mineral content and phytochemical composition of the fresh and processed leaves were subsequently determined, using standard methods/procedures. The crude protein of BLF (29.10%) was significantly (p<0.05) higher than the mean values of 26.70, 25.30 and 22.80%, obtained for BLS1D, BLA2D and BLOV1D, respectively. There was significant difference (p<0.05) in the calcium, magnesium, potassium, sodium, copper, manganese and nickel content of the different processed bitter leaf. There was significant difference (p<0.05) in the anti-nutrients content of different processed bitter leaves. $Quantitative\ estimation\ showed\ significant\ lowering\ (p<0.05)\ of\ all\ the\ contents\ of\ the\ phytochemicals\ in\ the$ processed leaves compared to fresh bitter leaf. This study concluded that processed V. amygdalina leaf meal can serve as good source of protein, fibre and minerals in animal feeding. Furthermore, the processing of the bitter leaf meal through drying reduced the composition of phytochemicals for better incorporation and utilization and incorporation in livestock feeds.

KEYWORDS

Bitter leaf, phytochemicals, mineral content, proximate composition, feedstuff

1. Introduction

Non availability of feed for all year round required for the maintenance and production of animals is one of the major challenges facing livestock production. Reduced supply of feeds, high demand for reduced supply of feeds, high demand for meat, and high cost of feeds and feedstuffs especially protein source are the major problem of development and expansion of livestock industries in developing countries(Solomon et al., 2007). Seasonal changes in the tropics, causes reduction in the palatability and nutritive value of the abounding grasses for animal feeding (Alokan, 1998). This problem necessitated interest and great concern to researchers because the availability of good quality grasses during the dry season is difficult (Onwuka, 1986; Huston et al., 1993). In the tropics in the tropics, ruminants are raised mainly on grasses, which are poor in nutrients and digestibility coupled with scarcity during the off season (Babayemi, 2007). Poor productivity and high mortality of stock, which characterize this industry is largely explained by the inadequacy of feeding the right quantity and quality of feeds to the various livestock species (Ayandiran et al., 2013). The rising trend in tree planting can be mutual and beneficial to both small ruminants and the environment at large. Leaf of trees can be used to feed goats and sheep as protein supplements all year round while the wastes accruing from the animals can as well be used as organic manure for the trees.

Many leguminous fodder trees and shrubs have high protein levels and are potentially promising supplements to overcome nutrient deficiencies provided anti-nutritional factors as tannins and other secondary compounds can be controlled (Mousa, 2011). They reported that on average the chemical composition of bitter leaf appeared to be suitable as a protein concentrate for ruminants, a suitable replacement for Gliricidia and Leuceana species (Ekeocha, 2011). It was concluded that some of the multipurpose leguminous trees (MPT) such as bitter leaf, may prove to be useful dietary supplements for ruminants receiving poor quality forages considering their chemical composition (El Hassan et al., 2000). Studies have shown that V. amygdalina is rich in nutritional composition and phytochemicals such as alkaloids, tannins, saponins and flavonoids (Alara et al., 2021; Oyeyemi et al., 2018). Bitter leaf is a good source of essential minerals and vitamins, a valuable contribution to nutritional security in regions where it is commonly consumed (Akpabio et al., 2021). The leaf contained 21.8% crude protein (Modupe and Babayemi, 2009). Different drying treatments are common practices used to extend the shelf life of bitter leaf and improve its palatability. These processes can have significant effects on the nutritional value and phytochemical contents of the vegetable (Iweala et al., 2020). Though bitter leaf meal is available during harsh weather for feeding animals, its nutritional and economic value as dry season feed source for ruminant animals is underutilized. Therefore, the present study is to investigate the effects of different drying methods on the nutrient and phytochemical contents of bitter leaf

Quick Response Code

Access this article online

Website:

DOI: 10.26480/msp.02.2025.64.67

www.matrixscpharma.com

(Vernonia amygdalina) meal as a potential feedstuff for livestock.

2. MATERIALS AND METHODS

The *Vernonia amygdalina* leaves used were harvested from the cut branches of the planted shrub on the Teaching and Research Farm, Obafemi Awolowo University, Ile-Ife. Samples were subjected to different processing methods as follows: fresh bitter leaf (BLF), fresh bitter leaf sundried for a day (BLS1D), fresh bitter leaf air dried for two days and sundried for a day (BLA2D) and fresh bitter leaf oven dried at 105°C for 24 hours (BLOV1D). All the samples were milled and kept in cellophane bags pending laboratory analysis. The proximate and mineral composition and phytochemicals of the samples were determined according to the standard methods (AOAC, 2000). Data obtained were statistically analyzed with the General Linear Model of SAS (2008) and the Duncan New Multiple Range Test option of SAS (2008) was used to detect significant differences among means.

3. RESULTS

There were significant differences (p<0.05) in the dry matter, organic matter, crude protein, crude fibre, ether extract, ash and nitrogen free extract content of processed bitter leaf (Table 1). Method of processing had effect on the proximate composition of the bitter leaf meal. The dry matter was 18.71, 83.93, 86.84 and 89.12%; organic matter, 80.37, 88.05, 85.35 and 85.44%; crude protein, 29.12, 26.67, 25.25 and 22.80%; crude fibre, 36.12, 12.94, 11.37 and 11.35%; ether extract, 7.71, 20.51, 19.49 and 17.74%; ash, 19.63, 11.96 and 14.57%; nitrogen free extract, 7.43, 27.93, 29.25 and 33.56% for BLF, BLS1D, BLA2D and BLOV1D respectively. The dry matter and nitrogen free extract content of BLOV1D was significantly (p<0.05) higher than the mean values of others while the organic matter and ether extract content of BLS1D was significantly (p<0.05) higher than the mean values of others. This can be due to the different processing method used. The crude protein content of BLF was higher than those obtained for BLS1D, BLA2D and BLOV1D.

Table 1: Proximate composition of the processed bitter Leaf							
Parameter (%)	BLF	BLS1D	BLA2D	BLOV1D	SEM	Probability	
Dry Matter (DM)	18.71 ^d	83.93c	86.84 ^b	89.12a	0.06	<0.0001	
Analysis % of DM							
Organic Matter	80.37d	88.05a	85.35c	85.44 ^b	0.02	< 0.0001	
Crude Protein	29.12a	26.67b	25.25c	22.80 ^d	0.19	0.004	
Crude fibre	36.12a	12.94 ^b	11.37 ^c	11.35°	0.12	< 0.0001	
Ether Extract	7.71 ^c	20.51a	19.49a	17.74b	0.27	0.001	
Ash	19.63a	11.96d	14.65 ^b	14.57°	0.02	< 0.0001	
Nitrogen free extract	7.43°	27.93 ^b	29.25 ^b	33.56a	0.47	< 0.0001	

a, b, c, d: Means within each row with different superscripts are significantly different (p < 0.05)

BLF - Fresh bitter leaf; BLS1D - Fresh bitter leaf sundried for a day; BLA2D - Fresh bitter leaf air dried for two days and sundried for a day; BLOV1D - Fresh bitter leaf oven dried at 105°C for 24 hours; SEM – Standard error of mean

Table 2 shows the mineral composition of the processed bitter leaf. There was no significant difference (p>0.05) in the phosphorus and iron content of the differently processed bitter leaf. There was significant difference

(p<0.05) in the calcium, magnesium, potassium, sodium, zinc, copper, nickel and chromium content of the different processed bitter leaf. The calcium, magnesium, potassium, sodium and zinc content of BLF was significantly (p<0.05) higher than the mean values of others while BLA2D was significantly (p<0.05) higher in copper and manganese content. The nickel content of BLS1D and BLA2D was significantly (p<0.05) higher than that of others.

Table 2: Mineral composition of the processed bitter leaf							
Minerals	BLF	BLS1D	BLA2D	BLOV1D	SEM	Probability	
Calcium (%)	0.05a	0.01 ^b	0.01 ^b	0.01 ^b	0.35	<0.0001	
Phosphorous (ppm)	0.23a	0.20a	0.25ª	0.20a	0.03	0.74	
Magnesium (%)	0.015a	0.0040b	0.0037b	0.0037ь	0.02	<0.0001	
Potassium (%)	0.12a	0.038b	0.046 ^b	0.040 ^b	0.003	0.0001	
Sodium (%)	0.13a	0.030ь	0.030ь	0.027c	0.0003	< 0.0001	
Sulfate (ppm)	0.028a	0.013b	0.020ab	0.014b	0.003	0.08	
Iron (ppm)	9.82a	10.02a	10.08a	7.47 ^a	0.29	0.69	
Zinc (ppm)	4.59a	2.24b	2.94 ^{ab}	2.41 ^b	0.0001	0.09	
Copper (ppm)	0.19b	0.28b	0.43a	0.18 ^b	1.45	0.01	
Manganese (ppm)	2.29b	2.76 ^b	6.67a	2.35 ^b	0.0004	0.01	
Nickel (ppm)	0.032c	0.23a	0.20a	0.11 ^c	0.01	0.0002	
Chromium (ppm)	0.21a	0.09 ^b	0.12ab	0.11 ^b	0.02	0.10	

 a,b,c,d : Means within each row with different superscripts are significantly different (p< 0.05)

BLF - Fresh bitter leaf; BLS1D - Fresh bitter leaf sundried for a day; BLA2D - Fresh bitter leaf air dried for two days and sundried for a day; BLOV1D - Fresh bitter leaf oven dried at 105°C for 24 hours; SEM – Standard error of mann

Table 3 shows the phytochemical contents of the processed bitter leaf. There was a significant decrease in all the contents of the phytochemicals in processed bitter leaves compared with the fresh bitter leaf. Tannin

content (mg/100g), polyphenol content (mg/100g), oxalate content (mg/g), phytate content (mg/g) and saponin content (%) of the leaves decreased from BLF to BLOV1D4. BLA2D had lowest flavonoid (0.24%) and cyanide (1.00 mg/kg) content compared to others. The alkaloid content of BLS1D and BLA2D was lower than that of BLF and BLOV1D. There was a reduction in the composition of phytochemicals in the leaves as a result of drying.

Table 3: Phytochemical contents of the processed bitter leaf							
Parameter	BLF	BLS1D	BLA2D	BLOV1D	SEM	Probability	
Saponin (%)	6.59a	1.49 ^b	1.44 ^b	1.24 ^c	0.03	< 0.0001	
Alkaloids (%)	4.08^{a}	0.64 ^c	0.64°	0.71 ^b	0.01	<0.0001	

Table 3 (cont): Phytochemical contents of the processed bitter leaf							
Flavonoid (%)	2.71a	0.28c	0.24^{d}	0.35b	0.01	< 0.0001	
Tannin (mg/100g)	10.20a	5.70 ^b	5.38 ^c	4.30 ^d	0.02	< 0.0001	
Polyphenol (mg/100g)	4.65ª	2.89 ^b	2.71 ^b	2.08 ^c	0.08	0.001	
Cyanide (mg/kg)	3.64a	1.23b	1.00°	1.26b	0.01	<0.0001	
Phytate (mg/g)	60.89 ^a	30.46b	28.51 ^c	24.09 ^d	0.06	<0.0001	
Oxalate (mg/g)	13.92a	10.74b	10.16 ^c	8.46d	0.01	< 0.0001	

a, b, c, d: Means within each row with different superscript are significantly different (p < 0.05)

BLF - Fresh bitter leaf; BLS1D - Fresh bitter leaf sundried for a day; BLA2D - Fresh bitter leaf air dried for two days and sundried for a day; BLOV1D - Fresh bitter leaf oven dried at 105° C for 24 hours; SEM – Standard error of mean.

4. DISCUSSION

The finding from the chemical composition of processed bitter leaf is in line who reported highest dry matter content of 91.40% in oven dried *Acacia angustissima* leaf meal and lowest, 89.80% in shade dried leaf meal (Sharai et al., 2015). The Crude Protein (CP) content of fresh and processed bitter leaves were higher compared to 21.50% and 19.70% reported (Owen, 2011; Ekeocha, 2011) respectively. The difference in CP value can be due to variation in processing methods, season and stage of cutting. BLA2D and BLOV1D had lower crude fibre content than others.

The calcium, magnesium, potassium and sodium content of BLF were higher than that of others while BLA2D had higher copper and manganese content. BLS1D and BLA2D had higher nickel content when compared with others. This showed that processing methods has effect on the mineral content of bitter leaf. The calcium, magnesium, potassium and sodium content of the fresh and processed bitter leaves were higher than the values reported by (Aliero and Addullahi, 2009). Higher reported higher iron, calcium and potassium contents in fresh bitter leaf than the processed vegetable except for sodium content were reported (Tsado et al., 2015). Processing of bitter leaf by air drying, sun drying and oven drying results in loss of calcium, magnesium, potassium, sodium, sulfate, zinc, nickel and Chromium. Relative to the suggested requirement range of 0.19-0.77% for calcium, 0.01-1.0% for potassium, 0.01-0.25% for sodium (Fettman et al., 1984), 0.17-0.21% for magnesium and 1.20-2.70% for phosphorus, the inorganic mineral contents of the bitter leaf meal could serve as good source of minerals for ruminant animal (McDowell, 1997; McDowell, 1992; Suttle, 1983; Akinsoyinu, 1986). The processed bitter leaf (BLA2D) with the required nutritive value and least antinutritional factors could be incorporated in the diets of ruminants. Oven drying method is expensive and less economical than BLA2D.

Tannin content (mg/100g), polyphenol content (mg/100g), oxalate content (mg/g), phytate content (mg/g) and saponin content (%) of the leaves decreased from BLF to BLOV1D4. BLA2D had lowest flavonoid (0.24%) and cyanide (1.00 mg/kg) content compared to others. Authors also reported lowest tannin content in oven dried leaf meal and observed marked reduction in cyanide content of cassava leaves and their consequent toxicity at 105 °C drying temperature (Phuc et al., 2000; Sharai et al., 2015). The alkaloid content of BLS1D and BLA2D was lower than that of BLF and BLOV1D. There was a reduction in the composition of the phytochemicals in the leaves as a result of the drying process. The reduction in these compounds is consistent with research by (Ogbonna et al., 2023). They found that processing methods generally reduced bioactive compounds like flavonoids and phenols, but noted that this reduction might be offset by improved bioavailability of remaining compounds. The observed higher cyanide content in the fresh samples of the different vegetables studied compared to their corresponding processed samples, agrees with the submission that various food processing methods will reduce cyanide content in avocado (Persea americana) leaves, plants and cassava leaves, respectively (Oboh, 2005; Ojiako and Igwe, 2008). The significant decrease in cyanide concentrations in the vegetable during sun drying and oven drying may be attributed to the volatile nature of cyanide and could have been dissipated during drying. This observation is in agreement with the finding to the effect that cyanides are volatile compounds and can be dissipated while drying (Aganga and Tshwenyane, 2003). Reduction in antinutrients like saponin, phytates, oxalates and tannins can improve palatability, mineral bioavailability and digestibility (Onigbinde et al., 2024).

5. CONCLUSION

The results obtained from this study showed that processed *V. amygdalina* could serve as good source of protein, fibre and minerals in animal feeding.

Furthermore, processing of the bitter leaf meal through drying reduced the composition of antinutritional factors for better utilization as feed for livestock.

REFERENCES

- Aganga, A. A. and Tshwenyane, S. O., 2003. Feeding values and Antinutritive factors of forage tree legumes. Pakistan Journal of Nutrition, 2 (3), Pp. 170-177.
- Akinsoyinu, A. O., 1986. Minimum phosphorus requirement of dwarf goats for maintenance. Tropical Agriculture (Trinidad), 63, Pp. 333-335.
- Akpabio, U. D., Akpakpan, A. E., Udo, U. E. and Essien, U. C., 2021. Physicochemical characterization and effect of extraction solvents on the phytochemical constituents and antioxidant properties of Vernonia amygdalina leaf extract. Journal of King Saud University-Science, 33 (1), 101206.
- Alara, O. R., Abdurahman, N. H. and Ukaegbu, C. I., 2021. Extraction of phenolic compounds: A review. Current Research in Food Science, 4, Pp. 200-214.
- Aliero, A. A. and Abdullahi, L, 2009. Effect of drying on the nutrient composition of Vernonia amygdalina leaves. Journal of Phytology, 1 (1), Pp. 28-29.
- Alokan, J. A., 1998. Intakes and digestibility by Yankasa sheep of diets containing different proportions of legumes and grass (Cynodon nlemfuensis). In: O. O. Oduguwa, A. O. Fanimo and O. A Osinowo (eds). Proceeding of Silver Anniversary of Nigerian Society for Animal Production, Pp. 337-338.
- AOAC, 2000. Association of official analytical chemists. Official methods of Analysis 16th edition. Washington D.C USA.
- Ayandiran, S. K., Odeyinka, S. M. and Makinde, O. A., 2013. Utilization of Wheat offal-carried Pineapple Waste meal in the diet of West African Dwarf (WAD) Goats. Bulletin of Animal Health and Production in Africa, 60 (4).
- Babayemi, O. J., 2007. In vitro fermentation characteristics and acceptability by West Africa Dwarf goats of some dry season forages. African Journal of Biotechnology, 6 (10) Pp. 1260-1265.
- Ekeocha, A. H., 2011. Investigation on the nutritive value of Vernonia amygdalina leaves (bitter leaves) for ruminant animals. Journal of Animal Science, Vol. 90, Suppl. 3/J. Dairy Sci. Vol. 95, Suppl. 2.
- El Hassan, S. M., Kassi, A. L., Newbold, C. J. and Wallace, R. J., 2000. Chemical composition and degradation characteristics of foliage of some African multipurpose trees. Animal Feed Science and Technology, 86, Pp. 27-37.
- Fettman, M. J., Chase, L. E., Bentinck-Smith, J., Coppock, C. E. and Zinn, S. A., 1984. Nutritional chloride deficiencies in early lactating Holstein cows. Journal of Dairy Science, 67, Pp. 2321-2335.
- Huston, J. E., Taylor, C. A., Lupton, C. J. and Brooks, T. D., 1993. Effects of supplementation on intake, growth rate and fleece production by female Angora kid goats grazing rangeland. Journal Animal Science, 71, Pp. 3124-3130.
- Iweala, E. E. J., Uhegbu, F. O. and Adesanoye, O. A., 2020. Biochemical effects of leaf extracts of Vernonia amygdalina and Azadirachta indica administered to sickle cell anaemia subjects. Asian Pacific Journal of Tropical Medicine, 13 (3), Pp. 126-132.
- McDowell, L. R., 1992. Minerals in Animal and Human Nutrition. 1st edition. Academic Press, New York, USA.
- McDowell, L. R., 1997. Minerals for Grazing Ruminants in Tropical Regions. Bulletin of the Institute for Food and Agricultural Sciences, University of Florida Gainesville, USA. Pp. 81

- Modupe, O. D. and Babayemi, O. J., 2009. Utilization of Some Edge-Row Plants as Forage in Nigeria. Pakistan Journal of Nutrition, 8 (8), Pp. 1269-1274.
- Mousa, M. R. H., 2011. Effect of Feeding Acacia as Supplements on the Nutrient Digestion, Growth Performance, Carcass Traits and Some Blood Constituents of Awassi Lambs under the Conditions of North Sinai. Asian Journal of Animal Sciences, 5, Pp. 102-117.
- Nworgu, F. C., Egbunike, G. N., Abu, O. A., Fapohunda, J. B. and Omole, A. J., 1999. Effects of concentrate and leaf meals on the performance of rabbits. In: Ologhobo, A. D., Egbunke, G. N., Adewumi, M. K., Bamgbose, A. M., Iyayi, E. A. and Adesehinwa, A. O. K. (eds.) Sustainability of the Nigerian Livestock Industry in 2000 AD. Proceeding of 4th Annual Conference of Animal Science Association of Nigeria (ASAN), IITA conference center, Ibadan, Nigeria, September 14-16, 1999. Pp. 150-153.
- Oboh, G., 2005. Effect of some post-harvest treatments on the nutritional properties of Cnidoscolus acontifolus leaf. Pakistan Journal of Nutrition, 4, Pp. 226-230.
- Ogbonna, O. C., Izundu, A. I., Ikeyi, A. P. and Ohia, G. U., 2023. Comparative evaluation of the effect of different processing methods on the nutritional and antinutritional compositions of Vernonia amygdalina (bitter leaf). Journal of Food Processing and Preservation, 47 (2).
- Ojiako, O. A. and Igwe, C. U., 2008. The nutritive, anti-nutritive and hepatotoxic properties of Trichosanthes anguina (snake tomato) fruits from Nigeria. Pakistan Journal of Nutrition, 7, Pp. 85-89.
- Onigbinde, A. O., Alagbe, I. C. and Babrinde, G. O., 2024. Effects of drying and Pre-cooking treatment on the nutrient and phytochemical contents of bitter leaf (Vernonia amygdalina). International Journal of Food Science and Nutrition, 9 (3), Pp. 53-58.

- Onwuka, C. F. I., 1986. Gliricidia septum as dry season feed for goat production in Nigeria. In: Haque I, Jutzi S and Neate P J H (eds), Potentials of forage legumes in farming systems of sub-Saharan Africa. Proceedings of a workshop held at ILCA, Addis Ababa, Ethiopia, 16-19 September 1985. ILCA (International Livestock Centre for Africa), Addis Ababa, Ethiopia. Pp. 533-539.
- Owen, O. J., 2011. Proximate Composition, Energy Content and Mineral Profile of Vernonia amygdalina (Bitter Leaf) Meal. Advances in Food and Energy Security, 1, Pp. 36-39.
- Oyeyemi, I. T., Akinlabi, A. A., Adewumi, A., Aleshinloye, A. O. and Oyeyemi, O. T., 2018. Vernonia amygdalina: A folkloric herb with anthelminthic properties. Beni-Suef University Journal of Basic and Applied Sciences, 7 (1), Pp. 43-49
- Phuc, B. H. N., Ogle, B. and Lindberg, J. E., 2001. Nutritive value of cassava leaves for monogastric animals. Cassava as livestock feed (July 23-25 2001) in Khon Kaen University, Thailand. http://www.mekarn.org/workshops.htm
- SAS, 2008. SAS User's Guide Statistics, SAS Inc. Cary., North Carolina, 2008 edition.
- Sharai, N., Petronella, T. S. and Tinyiko, E. H., 2015. Effect of stage of growth and processing methods on the nutritional content of Acacia angustissima leaf meal harvested for broiler feeding. Livestock Research for Rural Development, 27 (5).
- Solomon, S. H., Sadiku, S. O. E. and Tiamiyu, L. O., 2007. Wing reproductive termite (Macrotremes nigeriensis), soybean (Glycine max) meals blend as diets of Heterobranchus bidorsalis fingerling. Pakistan Journal of Nutrition, 6 (3), Pp. 267-270.
- Suttle, N. F., 1983. Meeting the mineral requirement of sheep. In: Haresign W (editor), Sheep Production. Butterworth, London, UK. Pp. 167-183.

