

Matrix Science Pharma (MSP)

DOI: http://doi.org/10.26480/msp.02.2025.48.52

ISSN: 2521-0432 (Online)

CODEN: MSPAFY

RESEARCH ARTICLE

COMPARATIVE ASSESSMENT OF THE ANTINUTRITIONAL COMPOSITION OF TWO CASSAVA (MANIHOT ESCULENTA CRANTZ) VARIETIES GROWN IN THREE MAJOR AREAS OF KOGI STATE

Edinoh, Daniel Ojomugbo*, Adebola, Margaret Iyanu, Ehoniyotan, Olayemi Ibukun

Department of Plant Science and Biotechnology, Prince Abubakar Audu University, Anyigba Kogi State Nigeria. *Corresponding Author's email: edinohdaniel1@gmail.com

This is an open access article distributed under the Creative Commons Attribution License CC BY 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ARTICLE DETAILS

Article History:

Received 12 September 2024 Revised 27 November 2024 Accepted 17 January 2025 Available online 18 March 2025

ABSTRACT

Cassava (Manihot esculenta Crantz) is a perennial crop with an edible starchy tuberous root grown in tropical and subtropical regions. However, limited studies have assessed the antinutritional factors affecting its nutrient availability. This study evaluated the antinutritional composition of two cassava varieties (white TMS 30001 and yellow TMS 30572) grown in Ankpa, Kabba, and Okene (Kogi State) using standard methods. Tubers from Agricultural Development Project (ADP) farms were analyzed at Kogi State University Biochemistry Laboratory for cyanide, tannin, oxalate, phytate, and trypsin inhibitor content. Data were analyzed using ANOVA (SPSS version 20), with Duncan multiple range test (DMRT) for mean separation and T-test for comparing both varieties. Results showed significant differences (P≤0.05) among the antinutrient compositions. In white cassava, Okene tubers had the highest antinutrient values except for phytate (1.71±0.04mg/100g) and tannin (0.36±0.1mg/100g), which were highest in Kabba and Ankpa, respectively. In yellow cassava, Okene had the highest levels of all antinutrients except phytate (3.31±0.10mg/100g) and oxalate (0.23±0.00mg/100g), which were highest in Ankpa. The T-test indicated that white cassava had higher cyanide, oxalate, and trypsin inhibitor levels, while yellow cassava had higher phytate content. Both varieties had similar tannin levels. The lower antinutrient content of yellow cassava suggests it is more suitable for human consumption and livestock feed than white cassava across the three locations.

KEYWORDS

Cassava, Antinutrient, Cyanide, Tannin, Trypsin Inhibitor

1. Introduction

Cassava (Manihot esculenta Crantz), referred to as "Abacha" by the Igalas, "Rogo" by the Okuns, and "Echuka" by the Ebiras in Nigeria, is a perennial woody shrub belonging to the Euphorbiaceae family. This plant originated in tropical America and was brought to Africa by Portuguese explorers during the sixteenth century (Adenle, 2020). It is primarily grown in tropical and subtropical regions around the globe for its edible tuberous roots (Akinpelu et al., 2018). As a vital subsistence crop, cassava ranks as the third largest source of carbohydrates for human consumption worldwide, following rice and corn, with Africa being its predominant production continent (Soryotha et al., 2010). Currently, Nigeria holds the title of the world's largest cassava producer, having produced approximately 57 million metric tonnes in 2016 (FAO, 2018). Cassava is a starchy staple that produces approximately 40% more carbohydrates than rice and 25% more than maize (Tonukari, 2014). The roots of cassava are mainly utilized for food products such as garri, fufu, and lafun (Obuh, 2011). This is largely due to the high carbohydrate content of cassava roots, which ranges from 60% to 70% in Nigerian varieties. Additionally, cassava is a good source of essential minerals including calcium, phosphorus, manganese, iron, zinc, and potassium (Udoetok and Uffia, 2012).

Cassava is categorized into sweet and bitter varieties based on their cyanide levels. Sweet cassava varieties contain low levels of cyanogens and can be consumed with minimal processing. In contrast, bitter cassava varieties have high cyanogen content and require extensive processing to eliminate these compounds before they can be safely eaten (Obueh and Kolawale, 2016). The cassava plant grows faster compared to other crops and has remarkable ability to withstand harsh climatic conditions. These two qualities have made the diverse edible varieties of cassava to be an outstanding crop that saves at least 500 million of human lives from hunger worldwide (Tivana et al., 2018). Cassava plays a food security role in areas prone to drought, famine and in periods of strives and civil disturbance (Akoja and Mohammed, 2014). The crops ability to provide a staple food base is a function of its flexibility in terms of planting and harvesting strategies, and because of its relative tolerance of poor soils and pest/disease problems. This explains why it is valued in Africa, for the food security it provides. It is also grown for industrial purposes such as the production of starch and for fermentation into ethanol (Adelekan, 2020).

Furthermore, cassava contains some antinutritional and toxic substances such as cyanide, oxalate, phytate, tannin, saponins and trypsin inhibitor (Montagnac et al., 2009). These substances interfere with its digestibility and uptake of nutrients, and might present toxic effect depending on the amount in which it is consumed. Anti-nutrients or antinutritional factors may be defined as those substances generated in natural feedstuffs by the normal metabolism of species and by different mechanisms (for example inactivation of some nutrients, diminution of the digestive process or metabolic utilization of feed) which exerts effect contrary to optimum nutrition (Gemede and Ratta, 2014).

The presence of antinutrients in cassava may reduce the acceptability of it's food products and may have negative impact on the carbohydrate and

Quick Response Code

Access this article online

Website:

www.matrixscpharma.com

DOI:

10.26480/msp.02.2025.48.52

mineral bioavailability (Mihrete, 2019). Furthermore, of all the antinutrient present in cassava, cyanide is the most toxic factor restricting the consumption of cassava tubers. A group researchers reported that consumption of high levels of cyanide causes acute toxicity, goiter, neuropathy and in severe cases, lead to death (Gonclaves et al., 2016). High amount of phytates causes muscular weakness and paralysis, tannins: digestive tract malfunction and trypsin inhibitors inhibit digestive enzymes and cause growth depression in humans as reported by (Gemede and Ratta, 2014; Sarkiyayi and Agar 2010). However, some of these compounds may exert beneficial health effects at low concentrations (Pihlanto, 2017). For example, saponin, when used at low levels have also been shown to reduce the blood glucose and insulin responses to starchy foods (Singh et al., 2017). In addition, phytates and tannins have been related to reduce cancer risk (Silva and Bracarense, 2016). Studies have shown that processing techniques such as fermentation, heat treatment, soaking and several others aids in the reduction or removal of these antinutrients (Popova and Mihaylova, 2019). Hemce this study tends to access and compare the antinutritional composition of two cassava varieties cultivated in three major regions (Ankpa, Okene and Kabba) of Kogi State.

2. MATERIALS AND METHODS

2.1 Study Area

This experimental work was carried out at the department of Biochemistry laboratory, Faculty of Natural Sciences, Kogi State University Ayingba which is located between Longitude $7^{\circ}91^{1}E$ and $7^{\circ}121^{1}E$ and Latitude $7^{\circ}281^{1}N$ and $7^{\circ}321^{1}N$ in the Eastern part of Kogi State in Dekina Local Government Area of Nigeria.

2.2 Source of Materials

Freshly harvested white and yellow tubers (TMS 30001 and 30572) were obtained from Agricultural development Program (ADP) farms in Ankpa (Latitude $7^{\circ}36^{1}N$ and Longitude $7^{\circ}62^{1}E$), Kabba (Latitude $7^{\circ}82^{1}N$ and Longitude $6^{\circ}07^{1}E$) and Okene (Latitude $7^{\circ}55^{1}N$ and Longitude $6^{\circ}23$ in Kogi State, Nigeria. The tubers were obtained from 10-14month old plant. The tubers are shown in Plate I, II and III below:

PLATE I: White and yellow cassava from Ankpa

PLATE II: White and yellow cassava from Kabba

Plate IV: Samples labelled in beakers respectively

Plate III: White and Yellow Cassava from Okene

2.3 Preparation of Samples

The white and yellow cassava roots were properly washed to get rid of sand and dust, the peels were removed and the pulps cut into smaller sizes. The samples were crushed using mortal and pistle, and transfered into beakers. The beakers were labellled $A_1(\mbox{White cassava from Ankpa}),$ $A_2(\mbox{Yellow cassava from Ankpa}),$ $B_1(\mbox{White cassava from Kabba}),$ $B_2(\mbox{Yellow cassava from Kabba}),$ C_1 (White cassava from Okene) and $C_2(\mbox{yellow cassava from Okene})$ as shown in plate IV above. The samples were then analysed for anti-nutrients present.

2.4 Determination of Anti-nutritional Compositions

2.4.1 Cyanide Determination

Cyanide content were determined by alkaline picrate method according to wary and filled method as described (Onwuka, 2015). 5g of powdered sample was dissolved in 50ml of distilled water in a conical flask and the extraction was allowed to stand overnight. 1ml of sample filtered was mixed with 4ml alkaline picrate in a cork testube and incubated in a ||water bath for 5minutes. After colour development (Reddish brown colour), the absorbance was read at 490nm, the absorbance of the blank containing 1ml distilled water and 4ml alkaline solution was also recorded. The cyanide content was extrapolated from cyanide standered curve prepared from different concentration of KCN solution containing 5-5ug cyanide in a 500l conical flask followed by the addition of 25ml of 1NHCI.

2.4.2 Phytate Determination

Analysis of phytate determination in samples followed the method (AOAC, 2012). Phytate was extracted with $0.5 \, \text{mol/L HNO}_3$ solution and digested with $0.5 \, \text{mol/L BNO}_3$ solution and exp to $0.5 \, \text{mol/L BNO}_3$ solution and exp to $0.5 \, \text{mol/L BNO}_3$ solution and digested with $0.5 \, \text{mol/L BNO}_3$ solution and $0.5 \, \text{mol/L BNO}_3$ solution and

complex. The absorbance (OD) was measured at 450nm wavelength using a spectrophotometer (P7 UV/Vis spectrophotometer). The phytate content was calculated from the 2mg of phytic acid standard concentration with a reagent blank treated as sample above.

$$Phytate \; (Mg/100g) = \frac{\text{Sample absorbance} \times \text{Standard Concentration}}{\text{Standard absorbance} \times \text{weight of sample}} \times 100$$

2.4.3 Oxalate Determination

Total oxalates were determined according to the procedure of fasset (2016). The extraction was done by weighing 1g of each sample and soaked with 100ml of distilled water. These were allowed to stand for 3hours and each was filtered through a double layer of filter paper. 10, 20, 30, 40 and 50ppm standard solution of oxalic acid were prepared and read on the spectrophotometer at 420nm for the absorbance. The absorbance of filtrate from each samples were also read on the spectronic 20.

2.4.4 Tannin content Determination

Analysis of tannin content was determined by the AOAC (2012) method. Sample (5g) was dispensed in 50ml of distilled water and shaken. The mixture was allowed to stand for 30minutes at 28°C before it was filtered through whatman no.4 grade of filter paper. The extract (2ml) was dispensed into a 50ml volumetric flask. Similarly, 2ml standard tannin solution (0.1mg/ml tannic acid) and 2ml distilled water were put in a separate volumetric flask to serve as standard. 2.5ml of saturated sodium carbonate (Na₂CO₃) solution and 1ml of follin-C reagent were added up to each flask and volume made up to 50ml and mixed well. After standing for $1^{1/2}$ hour, the sample was filtered using whatman no.4 grade of filter paper and the absorbance measured at 760 nm against reagent blank.

$$Tannin \ (Mg/100g) = \frac{Standard \ concentration \times Sample \ absorbance}{Standard \ Concentration \ \times weight \ of \ sample} \times 100$$

2.4.5 Trypsin inhibitor Activity Determination

Trypsin inhibitor activity was assayed by a procedure of (AOAC, 2012). Sample extract (0.1ml) and 0.9ml of 0.1mol/L phosphate buffer of pH 8.0 was mixed with the same volume of trypsin and pre incubated at 37° C for 5minutes; 1ml of 0.03% (w/v) Bovine serum Albumin (BSA) was added to the mixture and incubated for 30mins at 37° C_after which the reaction was stopped by the addition of 2ml of 5% (w/v) Trichloroacetic acid (TCA)

solution. The mixture was filtered. To 1ml of the filterate, 5ml of 0.55 mol/L Na_2CO_3 and 0.1ml of follin- C reagent. The resulting colour absorbance was determined at 660nm wavelength. Standard sample was prepared in the absence of inhibitors.

%Trypsin Inhibitor =
$$\frac{T-T}{T} \times 100$$

Where T is the absence of inhibitors; T° is absorbance in the presence of inhibitors.

2.5 Data Analysis

The data obtained were subjected to analysis of variance (ANOVA) using Statistical Package for Social Sciences (SPSS) Version 20 to compare the means among different antinutritional compositions of the two (2) Cassava varieties in the different locations. Where significant differences exist, Duncan's multiple range test (DMRT) was used to separate the means at $p \le 0.05$ level of significance. T-test was also used to compare the antinutritional compositions between the two (2) varieties.

3. RESULTS AND DISCUSSION

3.1 Results

3.1.1 Anti-nutritional Compositions of White Cassava (Manihot esculenta) from three different locations within Kogi State

Table 1 below showed the mean antinutrient compositions of white cassava variety from three different locations within Kogi State. Cassava tubers from Okene had the highest cyanide and trypsin inhibitor compositions (3.60 \pm 0.01mg/100g and 20.00 \pm 0.00%) respectively, while samples from Ankpa (0.51 \pm 0.00mg/100g and 8.88 \pm 0.00%) had the lowest compositions respectively. Tannin contents was found to be highest in cassava from Ankpa (0.31 \pm 0.1mg/100g) and lowest in Kabba and Okene(0.10 \pm 0.00mg/100g). Furthermore, cassava varieties from Kabba (1.71 \pm 0.04mg/100g) had the highest phytate compositions while Ankpa (0.61 \pm 0.04mg/100g) had the lowest. However, the oxalate content of white cassava from Kabba (0.18 \pm 0.00mg/100g) was found to be the lowest, with Okene (0.36 \pm 0.00mg/100g) having the highest composition at P \leq 0.05.

Table 1: Anti-nutritional Compositions of White Cassava (Manihot esculenta) from three different locations within Kogi State							
Location	Cyanide (Mg/100g)	Tannin (Mg/100g)	Phytate (Mg/100g)	Oxalate (Mg/100g)	Trypsin Inhibitors (%)		
Ankpa	0.51 <u>+</u> 0.00°	0.31 <u>+</u> 0.1 ^a	0.61 <u>+</u> 0.04 ^c	0.21 <u>+</u> 0.00 ^b	8.88 <u>+</u> 0.00 ^b		
Kabba	3.27 <u>+</u> 0.01 ^b	0.10 <u>+</u> 0.00b	1.71 <u>+</u> 0.04 ^a	0.18 <u>+</u> 0.00 ^c	5.00 <u>+</u> 0.00°		
Okene	3.60 ± 0.01 ^a	0.10 <u>+</u> 0.00 ^b	0.80 <u>+</u> 0.07 ^b	0.36 <u>+</u> 0.00 ^a	20.00 ± 0.00 ^a		

Means were expressed as mean \pm Standard deviation (S.D). The level of significance was taken at $P \le 0$. 05. Ducan multiple range test was used to separate the means where significant differences exist

3.1.2 Anti-nutritional Compositions of Yellow Cassava (Manihot esculenta) from three different locations within Kogi State

Table 2 below showed that; at P \leq 0.05, Cassava tubers from Okene had the highest cyanide and trypsin inhibitor (1.80 \pm 0.01mg/100g and

 $15.38\pm0.00\%)$ compositions respectively, while samples from Ankpa $(0.31\pm0.00\text{mg}/100\text{g})$ and $4.10\pm0.82\%)$ had the lowest compositions respectively Also, phytate and oxalate compositions was found to be highest in cassava from Ankpa $(3.31\pm~0.10\text{mg}/100\text{g})$ and $0.23\pm0.00\text{mg}/100\text{g})$ and lowest in Okene $(1.78\pm0.04\text{mg}/100\text{g})$ and $0.20\pm0.00\text{mg}/100\text{g})$ Furthermore, Tannin content of cassava from Okene $(0.33\pm0.00\text{mg}/100\text{g})$ was found to be highest with Kabba and Okene $(0.09\pm0.00\text{mg}/100\text{g})$ having the lowest compositions.

Table 2: Anti-nutritional Compositions of Yellow Cassava (Manihot esculenta) from three different locations within Kogi State						
Location	Cyanide (Mg/100g)	Tannin (Mg/100g)	Phytate (Mg/100g)	Oxalate (Mg/100g)	Trypsin Inhibitor (%)	
Ankpa	0.31 <u>+</u> 0.01 ^c	0.09 <u>+</u> 0.00 ^a	3.31 <u>+</u> 0.10 ^c	0.23 <u>+</u> 0.00 ^b	4.10 <u>+</u> 0.82 ^b	
Kabba	1.65 <u>+</u> 0.00 ^b	0.09 <u>+</u> 0.00 ^b	2.70 <u>+</u> 0.07 ^a	0.22 <u>+</u> 0.00 ^c	8.33 <u>+</u> 1.67 ^c	
Okene	1.80 ± 0.01 ^a	0.33 <u>+</u> 0.00 ^b	1.78 <u>+</u> 0.04 ^b	0.20 <u>+</u> 0.00a	15.38 ± 0.00a	

Means were expressed as mean \pm Standard deviation (S.D). The level of significance was taken at P \leq 0.05. Ducan multiple range test was used to separate the means where significant differences exist.

3.1.3 Comparism between the White and Yellow Cassava

The result from the T-test in Table 3 below showed that; significant differences were observed in the Cyanide (0.042), Phytate (0.00) and

Oxalate (0.017) and Trypsin inhibitor (0.481) content between both varieties of cassava from the different locations in this study. However, no significant differences was observed between the yellow and white cassava in their Tannin (0.983) content. The white cassava variety was found to highest in cyanide (2.46±1.46mg/100g), oxalates (0.28±0.08mg/100g) and trypsin inhibitor (11.29±6.74%) compositions while the yellow cassava was highest in phytate (2.59±0.67mg/100g) and both varieties have the same tannin content (0.17±0.10mg/100g) .

Table 3: Comparism of anti-nutrient compositions between the white and yellow cassava							
Variety	Cyanide (Mg/100g)	Tannin (Mg/100g)	Phytate (Mg/100g)	Oxalate (Mg/100g)	Trypsin Inhibitors (%)		
White	2.46 <u>+</u> 1.46 ^a	0.17 <u>+</u> 0.10 ^a	1.04 <u>+</u> 0.51 ^b	0.28 <u>+</u> 0.08 ^a	11.29 <u>+</u> 6.74 ^a		
Yellow	1.26 <u>+</u> 0.71 ^b	0.17 <u>+</u> 0.10 ^a	2.59 <u>+</u> 0.67 ^a	0.21 <u>+</u> 0.01 ^b	9.27 <u>+</u> 5.02 ^b		
P-Value	0.042	0.983	0.00	0.017	0.481		

Means were expressed as mean \pm Standard deviation. The level of significance was taken at $P \leq 0.05$. T-test was used to compare the antinutrient compositions between the white and yellow cassava

3.1 Discussion

From the results above in tables 4.1, and 4.2, it was observed that the mean cyanide compositions of cassava samples from the three locations (Ankpa, Kabba and Okene) in Kogi State showed significant differences at P ≤ 0.05 and ranged between 0.51 ± 0.00 mg/100g and 3.60 ± 0.01 mg/100g for the white and 0.31±0.01mg/100g and 1.80 ±0.01mg/100g for the yellow variety. These values falls below the range of the findings of a group that recorded between 0.98±0.05mg/100g researchers 6.85±0.00mg/100g in their work on six varieties of cassava grown in international institute for tropical agriculture (IITA), Ibadan, Nigeria and work of that recorded between 11.29±0.19mg/100g and 19.29±0.19mg/100g on six varieties of cassava grown and sold in Selangor Malaysia (Oresugun et al., 2016; Siti and Aishah, 2016). The cyanide content of cassava are the most toxic compounds limiting the consumption of cassava tubers (Emmanuel et al., 2012). It was reported by a group researcher that, consumption of high amounts of cyanide or improperly processed cyanide for a long time could induce certain diseases such as neuropathy, goiter, epilepsy and often lead to death (Gonclaves et al., 2016). However, in a very limited study, cyanides have been shown to have beneficial cardiovascular effects at very low concentrations (Parikh et al.,

Tannin however, impair with cassava starch and disaccharide assimilation and interact with proteolytic enzymes inhibiting their activity (Krupa, 2008; Agarwal, 2016). The results obtained in this study showed that; total tannin contents for white cassava ranged between 0.10 ± 0.1 mg/100g and 0.31 ± 0.01mg/100g while yellow cassava had values between 0.09 ± 0.00 mg/100g and 0.33 ± 0.00 mg/100g within the three locations in this study. This observed value agrees with the value observed by a researchers that recorded between 0.20±0.10mg/100g and 0.30±0.00mg/100g in their work on two cassava varieties grown and eaten in Ovia south local government area of Edo State, Nigeria. Phytates on the other hand bind with minerals such as zinc, calcium and iron to form a soluble complex, thereby reducing mineral bioavailability (Obueh and Kolawale, 2016; Kumar et al., 2009). The result in this study indicates that white cassava tubers has a phytate composition ranging between 0.61 \pm 0.04mg/100g and 1.71 \pm 0.04mg/100g while yellow cassava ranged between 1.78 \pm 0.04mg/100g and 3.31 \pm 0.10mg/100g . This observed value is lower than the values observed by who recorded between 112.82 \pm 0.00mg/100g and 225.64 \pm 0.00mg/100g on his work on pupuru produced by steeping cassava in different types of water and the work of that recorded from 216 mg/100g to 304 mg/100g phytate composition (Oyetayo, 2006; Sarkayiya and Agar, 2010). The significant differences between the recorded values and the work above is due to different locations involved in the study. Consequently, Phytates have been shown to cause muscular weakness and sometimes paralysis when in high concentration in the body (Soetan and Oyewole, 2009). However, invitro and invivo studies have shown that phytic acid may have beneficial effects in the prevention and treatment of several pathological conditions and cancer (Silva and Bracarense, 2016).

For oxalates, the recorded values ranged from 0.18 ± 0.00 mg/100g to 0.36 ± 0.00 mg/100g for the white variety and 0.20 ± 0.00 mg/100g to 0.23 ± 0.00 mg/100g for the yellow variety. Compared to the work of most of researchers that recorded an oxalate content of 13.56mg/100g and 1.76 ± 1.5 mg/100g respectively, the observed values were found to be lower (Olaoye et al., 2015; Wobeto et al., 2007). High amount of oxalates in the body bind calcium, leading to formation of crystals or excretion through urine. The crystals formed majorly contribute to kidney stones in humans (Massey et al., 2007). The low oxalate content compared to other works indicates that dwellers of kogi State who consume these cassava varieties are not at risk of kidney stones compared to other regions.

Furthermore, trypsin inhibitor compositions was recorded between $8.88\pm0.00\%$ and $20.00\pm0.00\%$ for white cassava and between $4.10\pm82\%$ and $15.38\pm0.00\%$ for the yellow cassava. The value observed was found to be a little higher than the value recorded by which is $4.0\pm0.00\%$ for white

cassava variety (Sarkiyayi and Agar, 2010). The observed value however, is in alignment with the findings of who worked on African yam bean and recorded $6.67\pm0.33\%$ trypsin inhibitor content (Ndidi et al., 2014). High amount of trypsin inhibitors in foods have been shown to cause pancreatic enlargement and growth depression in humans (Soetan and Oyewole, 2009). It can however be reduced in cassava grown in Kogi state and other regions via processing strategies like soaking, heat treatment, and fermrntation (Parul, 2014).

Summarily, from table 4.3 above, significant differences were observed in all the parameters studied except for tannin and trypsin inhibitors. The white cassava variety was found to be higher in cyanide (1.26±1.46mg/100g) oxalates (0.28±0.08mg/100g) and trypsin inhibitor (11.29±6.74%) compositions while the yellow cassava was highest in phytate (2.59±0.67mg/100g) and both varieties have the same tannin content (0.17±0.10mg/100g). The white cassava was observed to be the cassava variety with the highest concentration of all compared antinutrients except for phytates and tannins.

Anti-nutrients present in cassava and other crops can be reduced by several processing methods such as soaking, cooking, boiling, germination, autoclaving, fermentation, sprouting and other processing methods, which however may interfere with the level of protein and fibre contents used as indicator of high nutritive value as reported (Liyanage et al., 2014). However, fermentation drastically reduce or totally eradicate the cyanide and most antinutritional content of cassava and substantially improve the nutritional quality. Heat treatment such as cooking or boiling also have a greater efficiency in the elimination of heat labile antinutrient (oxalates, cyanides, trypsin inhibitors) since they are very sensitive to standared temperatures (Gemede and Ratta, 2014; Mihrete, 2019).

4. CONCLUSION

From the study, there was significant variations in the anti-nutrients compositions of the two cassava varieties grown and eaten in three areas (Ankpa, Kabba and Okene) of Kogi state. From the locations studied, white cassava tubers from Okene had the highest value for all the anti-nutrients analysed except for phytate and tannin where Kabba and Ankpa was highest respectively. Similarly, Okene had the highest composition of all the antinutrient in the yellow cassava except for phytate and oxalate where Ankpa took the lead. Therefore, families living in Okene could be at risk of several health complications such as goitre, cretinism among children, neuropathy and growth depression compared to other locations and as such, cassava should be extensively processed in this area prior to consumption. The white cassava variety had the highest content of all the anti-nutritional factors analyzed except in phytates where the yellow cassava outperformed it and tannins where both varieties had the same value. Hence, the yellow cassava variety will be safer and healthier for use in human consumption and livestock feed formulation across the three locations in Kogi State compared to the white cassava.

RECOMMENDATION

The anti-nutritional factor of the two cassava varieties (White and yellow varieties) used in this work can provide useful information regarding the selection of both desirable and potential variety for human and animal consumption; it is therefore recommended that further research work be carried out on this variety to determine the best of them for incorporation in human and livestock feed. Also, other nutritional analysis should be conducted on both varieties to know other compositions they contain. However, it is important to note that before cassava can be used in human and animal feed in Kogi state and other regions, it has to be processed and detoxified by several processes such as soaking, boiling, heat treatment and fermentation to the level which is safe before it can be incorporated in their feed. This will help in reducing the negative effect of the anti-nutritional factors and as well improve the nutritional quality of these varieties.

ACKNOWLEDGEMENT

We are grateful to God Almighty for the completion of this research work. We also want to thank in a special way Mrs. Adebola Margaret Iyanu who

supervised and sponsored this research work before her demise. May her soul rest in peace Amen. (With tears and deep sorrow).

REFERENCES

- Adelekan, B.A., 2020. Investigation of Ethanol Productivity of Cassava Crop as a Sustainable Source of Biofuel in Tropical Countries. African Journal of Biotechnology, 9 (35), Pp. 5643-5650.
- Agarwal, A., 2016. Duality of Anti-Nutritioanal Factors in Pulses. Journal of Nutritional Disorders and Therapy, 6 (1), Pp. 1-2.
- Akinpelu, A.O., Amamgbo, L.E.F., Olojede, A.E. and Oyekale, A.S., 2018. Health Implications of Cassava Production and Consumption. Journal of Agriculture and Social Research, 11 (1), Pp. 118-123.
- Akoja, S.S., and Mohammed, O., 2014. Evaluation of the Proximate, Pasting and Sensory Characteristics of Cassava Flour (Fufu) Fortified with Pigeon Pea Flour. Pakistan Journal of Nutrition, 10 (2), Pp. 124-128.
- AOAC, 2012. Official method of Analysis. 18th Edition, Association of Officiating Analytical Chemists, Washington DC, Method 935.14 and 992.24.
- Emmanuel, O.A., Adedapo, T.A., Olawoye, O.O., Olutona, G.O., and Adu, B.W., 2020. Preliminary Limnological Survey of Ori Stream, Iwo, Osun State, Nigeria. International Journal of Biological and Chemical Sciences, 9 (1), Pp. 329-341.
- Fasset, E.D., 2016. Nutrients and antinutrients in selected brands of Malt drink produced in Nigeria. Pakistan Journal of Nutrition, 4 (5), Pp. 352–355.
- Food and agriculture Organisation, 2018. Food Outlook -Biannual Report on Global Food Markets. The impact of HIV/AIDS on the agricultural sector. Rome. pp. 104.
- Gemede, H.F., and Ratta, N., 2014. Antinutritional Factors in Plant Foods: Potential Health Benefits and Adverse Effects. International Journal of Nutrition and Food Sciences, 3 (4), Pp. 286-289.
- Gonçalves, A., Goufo, P., Trindade, H., Rosa, E.A., Ferreira, L. and Dominguez-peris, R., 2016. Cowpea (Vigna unguiculata L. Walp), "A Renewed Multipurpose Crop for a More Sustainable Agri-food System: Nutritional Advantages and Constraints". Journal of Science and Food Agriculture, 96, Pp. 2941–2951.
- Kumar, V., Sinha, A.K., and Makkar, H.P.S., 2019. Dietary Roles of Phytate and Phytase in Human Nutrition: A review. Food Chemistry, 3, Pp. 45-59.
- Liyanage, R., Perera, O.S., Wethasinghe, P., Jayawardana, B.C., Vidanaarachchi, J.K., and Sivaganesan, R., 2014. Nutriti@@onal Properties and Antioxidant Content of Commonly Consumed Cowpea Cultivars in Sri Lanka. Food Legumes Indian Pulses Resources, 27, Pp. 215-217.
- Massey, L.K., 2007. Food oxalate: Factors affecting measurement, biological variation, and bioavailability. Journal of American Dietetic Association, 107, Pp. 1191-4.
- Mihrete, Y., 2019. Review on Anti Nutritional Factors and their Effect on Mineral Absorption. Acta Scientific Nutritional Health, 3 (2), Pp. 15.
- Montagnac, J.A., Davis, C.R., and Tanumihardjo, S.A., 2009. Nutritional Value of Cassava for Use as a Staple Food and Recent Advances for Improvement. Comprehensive Review in Food Science and Food Safety, 8, Pp. 181-188.
- Ndidi, U.S., Ndidi, C.U., Olagunju, A., Muhammed, A., Billy, F.G., and Okpe, O., 2014. Proximate, Antinutrients and Mineral Composition of Raw and Processed (Boiled and Roasted) Sphenostylis stenocarpa Seeds from Southern Kaduna, Northwest Nigeria. Research Article. Pp. 9.
- Obueh, H.O., and Kolawale, S.E., 2016. Comperative study on the nutritional and antinutritional composition of sweet and bitter

- varieties of cassava for garri production. Journal of Nutrition and Health Sciences, 3 (3), Pp. 302.
- Obuh, S.O., 2011. Evaluation of the Nutritional Value of Cassava. Journal of Food Science and Safety, 19 (4), Pp. 23-26.
- Olaoye, O.A., Lawrence, I.G., Cornelius, G.N. and Ihenetu, M.E., 2015. Evaluation of Quality attributes of cassava product (garri) produced at varying lenth of fermentation. Journal of Agricultural Science, 2 (1), Pp. 1-7.
- Onwuka, G.I., 2005. Food analysis and instrumentation: theory and practice. Naphathali prints, Nigeria, Pp. 95-96.
- Oresugun, A.O., Fagbenro, O.A., Ilona, P. and Edah, B., 2016. Nutritional and antinutritional composition of cassava leaf protein concentrate of six cassava varieties for use in aqua feeds. Congent food and Agriculture, 2, Pp. 11473.
- Parikh, M., Netticadan, T., and Pierce, G.N., 2018. Flaxseed: its Bioactive Components and their Cardiovascular Benefits. American Journal of Physiology, 313, Pp. 146–159.
- Parul, B., 2014. Anti-Nutritional Factors in Foods and their Effects. Journal of Academia and Industrial Research (JAIR), 3 (6), Pp. 285-290.
- Pihlanto, A., Mattila, P., Mäkinen, S., Pajari, A.M., 2017. Bioactivities of Alternative Protein Sources and their Potential Health Benefits. Food and Function, 8, Pp. 344.
- Popova, A., and Mihaylova, D., 2019. Antinutrients in Plant-based Foods: A Review. The Open Biotechnology Journal, 13, Pp. 68-76.
- Sarkiyayi, S., and Agar, T.M., 2010. Comparative Analysis on the Nutritional and Antinutritional Contents of the Sweet and Bitter Cassava Varieties. Advanced Journal of Food Science and Technology, 2, Pp. 12-15.
- Silva, E.O., and Bracarense, A.P., 2016. Phytic Acid: From Antinutritional to Multiple Protection Factor of Organic Systems. Journal of Food Science, 81, Pp. 135713.
- Singh, B., Singh, J.P., Singh, N., Kaur, A., 2017. Saponins in Pulses and their Health Promoting Activities: A Review. Food Chemistry, 233, Pp. 540–549.
- Siti, S.J., and Aishah, B., 2016. Nutritional and antinutritional composition of different varieties of cassava (Manihot esculenta Crantz) leaves. Journal of technology, 78 (6), Pp. 59-63.
- Soetan, K.O., and Oyewole, O.E., 2019. The Need for Adequate Processing to Reduce the Antinutritional Factors in Plants Used as Human Foods and Animal Feeds: A Review. African Journal of Food Science, 3 (9), Pp. 223-232.
- Soryotha, S., Kyu, K.L., and Ratanakhanokcha, K., 2010. An efficient treatment for detoxification process of cassava starch by plant cell wall degrading enzymes. Journal of Bioscience and Bioengineering, 109, Pp. 9-14.
- Tivana, L.D., Francisco, J.D.C., Zelder, F., Bergenståhl, B., and Dejmek, P., 2018. Straightforward rapid spectrophotometric quantification of total cyanogenic glycosides in fresh and processed cassava products. Food Chemistry, 158, Pp. 20-27.
- Tonukari, N.J., 2014. Cassava and the future of starch. Electronic Journal of Biotechnology, 7 (1).
- Udoetok, I.A., and Uffia, I.D., 2012. Effect of blanching on Nutrient and antinutrient levels of leaves of some varieties of cassava (Manihot esculenta crantz). Journal of Atoms and Molecules, 2 (5), Pp. 387-393.
- Wobeto, C., Correa, A.D., de Abreu, M.P., dos Santos, C.D., and Pereira, H.V., 2007. Antinutrients in the Cassava (Manihot esculenta Crantz) Leaf Powder at Three Ages of the Plant. Food Science and Technology, 27 (1), Pp. 10-19.

