INTRODUCTION

Nowadays, medicinal plants and spices are cultivated and replacing conventional crops in Pakistan [1]. Usage of natural plants or any part of plants particularly certain herbs in the remedy of specific disorders or conditions is lie under the category of Ethnomedicines. Pakistan is one of the known countries for production and usage of these medicinal plants [2]. World Health Organization (WHO) expected that there are about 80% of the world population mainly depend on the ethnomedicines in favor of their crucial health requirements rather than allopathic medicines in the developing countries [3]. Human beings have been used medicinal plants in curing various disorders and ailments because these plants seem to be less toxic and also have no significant side effects [4]. In some study explained that phytochemicals are present in plants which are secondary metabolites and produced as a result of normal metabolism of these medicinal plants such as phenols, alkaloids, steroids, glycosides, flavonoids and certain pigments [5]. Reactive oxygen species (ROS) are highly reactive molecules containing unpaired electrons and produced by living organisms under normal cellular metabolism and environmental factors. These molecules at low to moderate concentration are responsible of cell signaling and normal physiological processes, but at high concentration, they produce adverse modifications to the cellular components. In this review paper, the product of existing ethnomedicine consists of the extracts of plants that are investigated as phytochemical (qualitatively and quantitatively) and ROS status of plants. This project has not been only helped to understand the compositional integrity of the ethnomedicine but also gave a deep insight into the effectiveness of specific phytochemicals which were the essential part of these medicinal plants. Cassia angustifolia, Curcuma zedoaria, Embelia ribes, Piper nigrum, Rosa damascena, Terminalia belerica, Terminalia chebula and Zingiber officinalis have been reviewed for the treatment of human disorders likewise stomach, liver and other ailments.

EFFECT ON STOMACH AND LIVER

Herbal medicinal natural plants and species are mostly used for wide purposes in Pakistan in current situation. There are diverse variety of phytochemical constituents which are present in plants and act as secondary metabolites that are formed from the normal metabolism likewise alkaloids, flavonoids, glycoside, phenols, steroids and other specific pigments. Therefore, the botanist concentrations are increasingly changing to ethnobotanical practices due to availability at lower price, wide safety and efficacy margin and less side effects of plants. The medicinal benefits of the special phytochemicals of the plants cannot be ignored. Some of the herbal plants have been expressed for their significance to take care of the different ailments of mankind particularly correlated to liver, GIT, stomach and colon.

KEYWORDS

Metabolites, alkaloids, flavonoids, glycoside, phenols, steroids.

1. INTRODUCTION

Nowadays, medicinal plants and spices are cultivated and replacing conventional crops in Pakistan [1]. Usage of natural plants or any part of plants particularly certain herbs in the remedy of specific disorders or conditions is lie under the category of Ethnomedicines. Pakistan is one of the known countries for production and usage of these medicinal plants [2]. World Health Organization (WHO) expected that there are about 80% of the world population mainly depend on the ethnomedicines in favor of their crucial health requirements rather than allopathic medicines in the developing countries [3]. Human beings have been used medicinal plants in curing various disorders and ailments because these plants seem to be less toxic and also have no significant side effects [4]. In some study explained that phytochemicals are present in plants which are secondary metabolites and produced as a result of normal metabolism of these medicinal plants such as phenols, alkaloids, steroids, glycosides, flavonoids and certain pigments [5]. Reactive oxygen species (ROS) are highly reactive molecules containing unpaired electrons and produced by living organisms under normal cellular metabolism and environmental factors. These molecules at low to moderate concentration are responsible of cell signaling and normal physiological processes, but at high concentration, they produce adverse modifications to the cellular components. In this review paper, the product of existing ethnomedicine consists of the extracts of plants that are investigated as phytochemical (qualitatively and quantitatively) and ROS status of plants. This project has not been only helped to understand the compositional integrity of the ethnomedicine but also gave a deep insight into the effectiveness of specific phytochemicals which were the essential part of these medicinal plants. Cassia angustifolia, Curcuma zedoaria, Embelia ribes, Piper nigrum, Rosa damascena, Terminalia belerica, Terminalia chebula and Zingiber officinalis have been reviewed for the treatment of human disorders likewise stomach, liver and other ailments.

2. CASSIA ANGUSTIFOLIA

A study stated that Cassia angustifolia also known as Senna Alexandria is an ornamental plant [6]. It belongs to family Leguminosae, widely cultivated in India and South East Asia and is commonly known as sararakonarai in Tamil. A researcher concluded that Cassia angustifolia has been used as laxative agent because it contains hydroxyanthracene glycosides which increase the peristaltic movement of colon and also alters its absorption and resulting in fluid accumulation and expulsion of excreta [7]. A group researchers revealed that Cassia angustifolia has antibacterial, hypo-cholerolaemic, hepato-protective, anti-diabetic, anti-inflammatory and anti-oxidant actions. Cassia angustifolia also performs hepato-protective functions by restoring the elevated level of serum marker enzymes which in case of liver damage is decreased due to the loss of hepatocytes integrity. A group researchers also explained that increased level of serum bilirubin is also indicator of hepato-cellular damage but when treated with Cassia angustifolia these patients show significant reduction in conjugated and un-conjugated level of bilirubin by improving the liver conjugation function by activating the androstane receptors which helps in bilirubin clearance from liver [8]. A group scientist revealed that Cassia angustifolia also shows anti-hyperglycemic effect and can be used in diabetic patients [6]. Diabetes mellitus is basically irreversible damages to the beta cells resulted in reduction of insulin production, this low insulin production increases the activity of fatty acetyl-CoA enzyme which start beta oxidation of fatty acids ultimatly increase lipid peroxidation which impairs the membrane integrity and produce free radicals, while extracts of Cassia angustifolia increase the anti-oxidant activity of some enzymes.

Cassia angustifolia shows negative effects on coagulation of blood and may be associated with venous thrombosis [9]. A group researchers concluded that excessive use of Cassia angustifolia can cause some side effects including chronic diarrhea with fluid and electrolyte loss which leads to dehydration [10]. Denninger and Marletta, determined that as a
laxative agent abuse of Cassia angustifolia may cause hepatotoxicity so careful use is more necessary for Cassia angustifolia [11]. Cassia angustifolia seeds gum have the potential to convert into a new source of commercial gum thus utilized as an additive in pharmaceutical formulations [12]. Phytochemical qualitative and quantitative analysis of cassia angustifolia have been reported in the table 1 and 2.

3. CURCUMA ZEDOARIA

Curcuma zedoaria belongs to the family Zingiberaceae also called zinger family and commonly known as white turmeric. Curcuma zedoaria has 70 species most of them have been used in traditional medicines from many eras. In Pakistan, Curcuma zedoaria is mostly found in Sahiwal, Kasur and Okara in Punjab and Bannu, Haripur areas in Khyber Pakhtunkhwa [13]. The major constituents of Curcuma zedoaria which reveals the pharmacological activities are terpene compound, including anodiene, curdione, curcumol, curcumenon and curcumin. Curcuma zedoaria has a great scavenging and reducing effects against 2,2-diphenyl-1-picrylhydrazyl (DPPH) but low in chelating effect on ferrous ion [14]. The scavenging effect of essential oils present in Curcuma zedoaria on DPPH radical is directly proportional to the concentration of these oils. At 20mg/ml the scavenging effect of essential oils was 96.8% as comparable to butylated hydroxyanisol (BHA) that was 97% and alphatocopherol (96.4) and higher than that of ascorbic acid (92%). The scavenging effects of BHA, alphatocopherol and ascorbic acid were more effective at extremely low dose than that of essential oils of Curcuma zedoaria depending upon the concentration [15].

Table 1: Qualitative Analysis of plant extracts used in Habb-E-Kabid Naushadari.

<table>
<thead>
<tr>
<th>Plants</th>
<th>Alkaloids</th>
<th>Carbohydrates</th>
<th>Fixed Oils</th>
<th>Flavonoids</th>
<th>Glycosides</th>
<th>Phenols</th>
<th>Proteins</th>
<th>Saponins</th>
<th>Sterols</th>
<th>Tannins</th>
<th>Amino acids</th>
<th>Antibiotics</th>
<th>Terpenoids</th>
<th>Resins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cassia angustifolia [16]</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Curcuma zedoaria [17]</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Embelia ribs [1] [18]</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Piper nigrum [19] [20]</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Rosa damascena [21] [22] [23]</td>
<td>+</td>
</tr>
<tr>
<td>Terminalia belerica [24]</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Terminalia chebulla [25] [26]</td>
<td>+</td>
</tr>
<tr>
<td>Zingiber officinale [27]</td>
<td>+</td>
</tr>
</tbody>
</table>

+: Indicate positive test
−: Indicate negative test

Table 2: Quantitative Analysis of plant extracts used in Habb-E-Kabid Naushadari.

<table>
<thead>
<tr>
<th>Plants</th>
<th>Alkaloids (mg/dl)</th>
<th>Carbohydrates (µg/g)</th>
<th>Flavonoids (µg/ml)</th>
<th>Phenols (µg/g)</th>
<th>Tannins (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cassia angustifolia [28]</td>
<td>24.6</td>
<td>26.3</td>
<td>6.35</td>
<td>N.A</td>
<td>N.A</td>
</tr>
<tr>
<td>Curcuma zedoaria [17]</td>
<td>34</td>
<td>N.A</td>
<td>N.A</td>
<td>N.A</td>
<td>N.A</td>
</tr>
<tr>
<td>Piper nigrum [20]</td>
<td>156.8</td>
<td>46.1</td>
<td>1.08</td>
<td>261.4</td>
<td>0.002</td>
</tr>
<tr>
<td>Rosa damascena [21]</td>
<td>54</td>
<td>16</td>
<td>N.A</td>
<td>N.A</td>
<td>N.A</td>
</tr>
<tr>
<td>Terminalia belerica [24]</td>
<td>29</td>
<td>0.42</td>
<td>29.6</td>
<td>N.A</td>
<td>N.A</td>
</tr>
</tbody>
</table>

It has been used as hepatoprotective, anti-mutagenic, anti-carcinogenic against human ovarian cancer cell lines, anti-oxidant, anti-inflammatory and anti-microbial. A group researchers investigated that a special compound found in Curcuma zedoaria called curcuminoid has the inhibitory role against Type-1 integrase which is one of the important functions of Curcuma zedoaria in modern medication [14]. Essential oils present Curcuma zedoaria play a vital role as anti-oxidants and the compound responsible for the activity might be Azulenone. Phytochemical qualitative and quantitative screening of Curcuma zedoaria have been reported in the table 1 and 2.

4. EMBELIA RIBES

In a study, stated that Embelia ribes is a woody shrub belongs to family Myrsinaceae and it is widely distributed in the deciduous moist forests of India, Sri Lanka, South China and Western Ghats [29]. Embelia ribes is a shrub and found in hilly areas and commonly named as Vldanga or Bashmak. Other researchers described that Embelia ribes has active component embolin (embolic acid) along with Embelia ribes has also alkaloids, phenolics, saponins and carbohydrates [30]. Some of the researchers determined that Embelia ribes increases the activity of anti-oxidants and prevents the non-enzymatic degeneration and also evaluated wound healing active activity of Embelin isolated from ethanolic extracts of leaves of Embelia ribes [19]. A group researchers proved that Embelia ribes also shows anti-arthritis effects Embelia ribes lowers the interleukin 1β and tumor necrosis factor α and enhanced immune-modulatory effects on humoral and cellular immune responses [31]. Embelia ribes also lower the skin inflammation by inhibiting the tumor necrotic factor alpha (TNFα) and by reducing the skin thickness.

Sreepriya and Bal, explained that Embelin provide protection to the hepatic cell by scavenging the free radicals and lowering the lipid per oxidation which causes the damage to the liver [32]. Embelia ribes also have anti tumor activity by blocking the nuclear kappa factor blocking pathway which block the production of cancer producing genes. Some researchers investigated that Embelia ribes is being used as potent antioxidant in diabetic patients [33]. Seeds of Embelia ribes contain somehow bitter taste and used in treatment of ascites, mental distress, tumor, heart diseases, urinary discharge, snake bites. In mammalian cell line, it is being used as anti-inflammatory, anti-cancerous, chemo preventive, anti-oxidant and hepatoprotective agent.

A group researchers stated that islet beta-cells of pancreas are more susceptible to damage caused by oxygen free radical since defensive systems against oxidative species become weak under diabetic conditions [34]. Increased serum lactate dehydrogenase (LDH) and creatinine phosphokinase (CPK) levels in diabetic patients indicate cardiac muscular damage. Amount of these two hormones quantify the number of necrotic cells in the damaged tissue since both these parameters directly correlate with each other. Treatment with the ethanolic extracts of Embelia ribes continuously not only maintain the serum level of both parameters but also helping in the treatment of pancreatic disease [35]. Ethanolic extracts of Embelia ribes have the potency to reduce the nephrotoxicity in type-II diabetes by maintaining the hypertension and blood glucose level which are the main cause of nephrotoxicity in this condition. Hyperglycemia induced various signaling pathways activation which leads to increased level of reactive oxygen species. These reactive oxygen species (ROS) severely damaged the kidney at cellular level. The islets of beta-cells are more susceptible to ROS and free radicals under diabetic condition. Hyperglycemia induced various signaling pathways activation which leads to increased level of reactive oxygen species. These reactive oxygen species (ROS) severely damaged the kidney at cellular level. The islets of beta-cells are more susceptible to ROS and free radicals under diabetic condition [36]. Phytochemical qualitative study of Embelia ribes have been given in the table 2.

5. PIPER NIGRUM

Piper nigrum belongs to the family Piperaceae which comprises of 12 genera and about 1400 species mainly found in tropical areas. Commonly it is known as Kalimich, Kalimari and Black Pepper. Piper nigrum is aromatic plant and commonly used spice and regarded as king of spices [37]. Piper nigrum located in Indo-Malays region and mostly found in lower hills of West Bengal [38]. Some study mentioned that Piper nigrum was grown in tropical and subtropical rain forest and important medicinal and economical plant in various systems of medicine in South India due to its multi-dimensional effects [39].

Kaefer and Milner, determined that when triglycerides with oxidative stress and cholesterol levels high then they inhibit or block the activity of major antioxidants as catalase, glutathione, vitamin E (tocopherol), vitamin C (ascorbic acid), superoxide dismutase and glutathione peroxidase and Piper nigrum maintains the improvement of these antioxidants levels in the body [40]. Suhaj explained that best and more significant method to cover the bad flavour of meat products [41]. A group scientist described that Piper nigrum used in different conditions like in indigestion, anorexia, flatulence, cholera, malaria, arthritis, fever, vertigo, coma, sore throat and skin problems [42]. Piper nigrum also increases the blood flow and reduce the pain in partical. Piper nigrum also has anti-oxidant and anti-aller therapy for these ailments.

Piper nigrum dilutes the skin superficial vessels and prevents from fever when taking high doses. Piper nigrum also acts as stimulant and prevents from fever in malaria therefore used as anti-pyretic and anti-inflammatory [30]. Piper nigrum has cuminative and stimulating characteristics which causing the flow of saliva reflux that increases the gastric juices secretion and improves the appetite. Piper nigrum also helps in the treatment of indigestion, dysentery, stomach chills and diarrhoea and has also been used to be supportive therapy in gas eructation and colic problems [43].

Karsha and Lakshmi determined that Piper nigrum has potent anti-microbial activity against gram positive and gram-negative bacteria [44]. Piper nigrum inhibits the growth of Staphylococcus aureus, Bacillus cereus and Streptococcus faecalis in gram positive bacteria but in gram negative bacteria Piper nigrum inhibits the growth of Pseudomonas aeruginosa, Salmonella typhae and Escherichia coli. Piper nigrum also helps in many other problems likewise in vertigo, asthma, chronic indigestion, colonic toxin, obesity, sinusitis, fever, paralysis, arthritis, diarrhoea and cholelith. Platel and Sirivansan, described the uses of Piper nigrum to be anti-inflammatory, anti-pyretic, diuretic, immune-stimulant, hepatoprotective, anti-cancer, anti-microbial, rubefacient, counter irritant, anti-septic, digestive, analgesic, and anti-spasmodic [44]. Many of these therapeutic activities of Piper nigrum are associated with the piperine which is a major alkaloidal component of Piper nigrum.

Some researchers estimated high level of phytochemicals present in the Piper nigrum such as phenolic and alkaloids metabolites are responsible for the anti-microbial activity [46]. These metabolites show the anti-microbial activity by interfering the growth and metabolism of the microorganisms. As mentioned in a study that piperine is the alkaloidal component of Piper nigrum which is responsible for most of the anti-microbial, anti-septic, anti-inflammatory and anti-pyretic functions [47]. The free radical scavenging activity of ethanolic extracts of Piper nigrum was evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay (250 microg/ml) which shows a good anti-oxidant activity against reactive oxygen species [48]. A group scientist have been referred that Piper nigrum also responsible for the abnormal physiological and behavioral activities like hyperactivity, ulcerogenic, sedation of tajl and body hairs, shivering of body, increase and decrease of activity [49]. Phytochemical (Qualitative and Quantitative) and ROS of Piper nigrum have been reported in the table 1, 2 and 3.

Table 3: In vivo anti-oxidant activity of plants used in Habb-E-Kabid Naushadari.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Piper nigrum</th>
<th>Zingiber officinalis</th>
<th>Rosa damascena</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superoxide Dismutase</td>
<td>6.2±2.55</td>
<td>6.2±2.55</td>
<td>6.2±2.55</td>
</tr>
<tr>
<td>Catalase</td>
<td>5.2±0.49</td>
<td>5.2±0.49</td>
<td>5.2±0.49</td>
</tr>
<tr>
<td>Glutathione</td>
<td>218.3±46.2</td>
<td>218.3±46.2</td>
<td>218.3±46.2</td>
</tr>
</tbody>
</table>

6. ROSA DAMASCENA

Rosa damascena is deciduous shrub of family Rosaceae having beautiful flowers which are used all over the world for visual beauty and scents. Lobster described that Rosa damascena is cultivated throughout the world in particular in Iran for visual beauty and medicinal uses [51]. A group researchers investigated that Rosa damascena was used to treat abdominal pain, chest pain, menstrual bleeding, anti-inflammatory and in digestive problems particularly in [52]. Oils of this plant have analgesic, anti-inflammatory, anti-spasmodic and hypnotic effect. Rosa damascena shows antioxidant property by peroxidation of linoleic acid. Lobster, investigated that Rosa damascena has protective effect on liver and reduced parasitamol liver damage [52].
Other researchers explained that *Rosa damascena* contains certain phytochemical metabolites including carboxylic acid, terpen, myrcene and vitamin C which are responsible for most of the beneficial activities of *Rosa damascena* [53]. Kazaz and them colleagues reviewed that parts of *Rosa damascena* have carbohydrates 34%, proteins, alkaloids, saponins, fats in 1% and phosphorus 0.6% [21]. Most of medicinal properties of *Rosa damascena* are due to these compounds.

Some researchers described that aqueous and ethanolic extracts of rose oils and petals reflected wide spectrum anti-bacterial action which was more detrimental towards gram-positive bacteria the gram-negative bacteria [54]. While anti- fungal activity of *Rosa damascena* extract was examined against yeast and molds with diameter of zones of inhibition ranged between 10.5 to 17.5mm produced by disc diffusion assay. Phytochemical qualitative and quantitative investigations of *Rosa damascena* have been found in the table 1 and 2.

7. TERMINALIA BELERICA

Terminalia belerica also referred to as Bahera or Beleric Myrobaham belongs to family Combretaceae. *Terminalia belerica* is growing widely throughout the Sri Lanka, South East Asia and Indian subcontinent and its fruits specifically used for medicinal purposes. Acute and sub-acute toxicities, anti-oxidant, anti-microbial, anti-diabetic, anti-cancer, anti- diarheal, anti-hypertensive and hepatoprotective activities of *Terminalia belerica*, hence *Terminalia belerica* can play a vital role in prevention and curing the diseases [3].

A group researchers investigated and concluded the diverse pharmacological spectrum of *Terminalia belerica* is due to presence of important phytochemical like tannic acid, ellagic acid, gallic acid, flavone, glucose, fructose, and phenyllembolin [55]. Alam investigated that methanolic extracts of *Terminalia belerica* fruits along with its phytochemical exhibit’s antioxidant as well as antibacterial activity [53]. Sabu and Kuttan, has concluded significant anti-cancer properties of *Terminalia belerica* using enzymes such as glutathione reductase, catalase and superoxide dismutase and decreased level of glucose were observed in blood and liver by using *Terminalia belerica* which also represents its anti-oxidant as well as hypoglycemic significance [56]. Phytochemical qualitative and quantitative examination of *Terminalia belerica* have been evaluated in the table 1 and 2.

8. TERMINALIA CHEBULA

A group researchers considered *Terminalia chebula* a valuable and noticed that *Terminalia chebula* is evergreen flowering plant of family Combretaceae [57]. Commonly it is known as black myobaham, ink tree or chelbic myobaham. It is prominently found in Asia, but also found in Nepal, Sri Lanka, Bangladesh, Turkey, Iran, Pakistan and tropical areas of the globe. In Hindi this plant is known as Harad. Some researchers in their review stated that plants are used for treating since centuries ago and *Terminalia chebula* is known as "King of Medicines" as its usage as components in many medicines for treatment of diseases [58].

Moghimipour and Handali, stated that fruits of *Terminalia chebula* have mild laxative and antispasmodic effects and used in treatment of gastrointestinal disturbances, intestinal worms, cholera, bleeding gums, ulcerated oral cavity and have analgesic effects [59]. Gupta, in a study, showed that *Terminalia chebula* is a phytochemical that contains phytochemicals like tannic acid, ellagic acid, gallic acid and also acts as hypotensive agent by controlling the blood pressure [60]. *Zingiber officinale* also has a blood pressure lowering effect which is mediated by blockage of voltage dependent calcium channels. *Zingiber officinale* is considering as an alternative to conventional anti-emetic drugs. *Zingiber officinale* also acts as a useful herbal medicine having minor side effect such as diarrhoea in human. *Zingiber officinale* also possesses anti-bacterial activity which was evaluated in the allopathic medicine with anti-inflammatory and ROS investigation of *Zingiber officinale* have been found in the table 1 and 3.

10. CONCLUSION

Herbal medicinal natural plants are used as natural remedy for stomach, liver and other ailments through the whole population. Medicinal plants contains phytochemical likewise saponins, alkaloids, phenols and flavonoids constituents, they not only have different beneficial constituents for humankind but also act as natural remedies with no chances of significant side effects and reoccurrence as the allopathic medicines causes the extra side effects and more chances of other stomach and liver problems. Therefore, the world population mostly dependent upon these herbal medicinal plants that used for the treatment of almost all diseases.

REFERENCES


